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ABSTRACT, For the most part, error analysis has been
treated as though only independent errors are involved,
For convenience and simplicity, this has been a valid
assumption in error analysis at ACIC, However, with

the necessity for analyzing and reducing massive data

an awareness of the existence of dependent errors and
their significance in error analysis becomes increasingly
necessary,

The analysis of dependent errors makes use of the
concept of distribution moments and the moment matrix
(covariance matrix). This paper presents an analysis
of the normal bivariate and trivariate error distributions
along with their relationships to the moment matrix, and
the application of this concept to least squares and
adjustments, It is shown that a suitable transformation
of the covariance matrix yields independent errors which
may be substituted for the dependent errors in further
error analysis. A brief introduction to matrix properties
is also included for background information,
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1. INTRODUCTION

l.1. Purpose. The occurrence of data involving several veriables
is quite common to the reduction of geodetic information to a useful
form. Reduction of such information requires certain generealizations
and, for simplicity, it 1s often assumed that the variables are com-
pletely independent of each other. 1In many instances, this is not a
velid assumption and some type of reduction which considers the inter-
reletionship between variables is necessary.

The following sections describe a method of reduction which will
reflect the correletion between the variables, Extensive use is made
of statistical, geometricel, and metrix properties.

1.2. Assumptions and Generalizations. The mean value (X) of a

random varisble is computed by:

n
). %
= i=1
x n
where:
X = mean value

X = a random variable

sign indicating the sum of all values (xl, Xy vees xn)

n = qnumber of measurements.
As n grows larger the value of X becomes more reliable. In

theoretical statistics, n is considered to approach infinity and



therefore, incornorates a universe of readings. When n approaches
o , the computed velue approaches the theoretical value. The
theoretical value for the mean is generally considered the expected
value and symbolized by Efx({.
Another statistical parameter, the standard error (o), denotes the

dispersion of the measured values around the mean and is computed by:

i (xy - %)
i=1

n

The square of the stancard error (02) is known as the variance.

Since X and n also enter the computation of the standard error, it
1s again assumed that the true standard error is obtained with n ap-
proaching o ., While the distribution of x 1s discrete no devastating
error results when the discrete function 1s considered continuous with
n ranging from -0 to +0 ., It is also assumed that the variables
are normally distributed with systematic errors eliminated.

1.3. Independent and Dependent Errors. In error terminology two

types of errors are considered — dependent and independent. The
treatment of independent errors is comparatively simple because, as the

name implies,they are independent of each other. For example, the

megnitude of ei of one variable is completely independent of the mapgni-

tude of the error e% of another variable. Dependent errors (e]])_, eg),

however, are more involved as the magnitude and even the occurrence



of e? depends on the magnitude or occurrence of eg.
Correlation deals with the interrelationship of dependsnt errors.
The degree of correlation 1s expressed by a numerical quantity called
the correlation coefficient (p). Although independentl errors are
uncorrelated the converse is not necessarily true. It does not follow
that two errors are independent solely because thelr correlation
coefficient is zero. Consider the distribution which has a frequency
function expressed as x2 + y2 = R2. Since this is a circle pos-
sessing symmetry, the mean values and p would be considered zero and

uncorrelated. However, to be independent it is necessary that f£(x,y)

be of the form f(x) f(y).

2. MATRIX PROPERTIES

The matrix method lends itself to problems involving numerous
variebles and mathematical manipulations. It provides a system of
compact expressions for series of equations and permits performance
of mathematical processes with a minimum of work. Some of the basic
properties of the matrix method are presented at this point to insure
uniform understanding.

2.1. Definitions and Notations. An aggregate of numbers arranged

in a rectangular array is called a rectangular matrix, or simply, a

1.
The theory of independent errors, their probabilities and propagational

methods for univariste, bivariate, and trivariate cases is developed
in TR-96 "Principles of Error Theory and Cartographic Applications."



matrix., The array hes m rows and n columns and is denoted by:

- -
all ala LI ] alln
A = 821 Bpp rer Bpy
2
a.ml B.m2 cee B.mn

the first subscript designates the row, the second the column in which
the element is located. If the dimensions, m x n (m by n), of A are

borne in mind, it suffices to use the brief notation:
A = [a.iJ] (i = 4,2, 000,m 3 = 1,2, vv., n).

Two matrices are equal if their corresponding elements are equal.
Matrices composed of a single row are called row matrices and those

composed of a single column column matrices, In a square matrix of

the nth order, the number of rows equals the number of columns.
Among square mstrices, an important role is played by diasgonal
matrices, i.e., & matrix in which only the elements of the principal

(leading) diagonal are different from zero:

F o 0O ... O

0 Oy eee O




If all the numbers 0y of such a matrix are equal to each other, the

matrix is said to be a scalar:

fc 0 ... O

0 Q sse 0

and, 1f @ = 1, the matrix is sald to be the unit matrix I:

1 o0 ... ©

0 l [ N ] O
I =

o o ... 1]

A matrix with elements equal to zero is a null or zero matrix and
1s designated by the symbol O,

The determinant of a matrix is associated with any square matrix.
The determinant of the square matrix P is designated |P| and its
elements are the elements of matrix P without disarrangement. If

IP| ¥ 0, then P is called a non-singular matrix.

When the rows and columns in matrix A are interchanged:

_ -
all 312 cee a-ln
aal a% * o0 a2n

A = = lagyls
bm aw * 8 0 amld




the transposed matrix or transpose:

&ll 8.21 cee aml
T a 8hn see 8
R - R ] I

aln 8.2n cee an

g -

is obtained.

2.2. Elementary Operations on Matrices. To effectively use

matrices, the methods of addition and multiplication must be defined.
When the elements of & matrix are obtained by multiplying all the
elements of the matrix A by a number ¢, the result is called the

product of & and the matrix A.

aall 08.12 cee ow.ln

aa21 maz LI ] aa2n

aaml a&m2 cee OB,

For example let:

it
n
()
n

a = 3, and A

then:
3.3 3.4 3.1 9 12 3
CA = 32 3.6 3.2 = 6 18 6
31 30 341 3 0 3



When the elements of a matrix C are the sums of the corresponding

elements of A and B, the result is the sum of A and B and is defined

only when A and B have the same dimensions.

512+b12 [ N ) alIl+b]n
%2+b22 L N ) 32n+b2n
°‘n12+bn:2 ser a’nm+bnm_‘
1 5 9 6
and B =
3 4 7 8
0+9 k+6 3 5 9 10
2+7 1+8 9 -1 9 9

Basic Properties of Matrix Addition and Multiplication.

a'll+bll
l+b
C = A+B = "21 7 e
Laml+'bml
For example, let:
2 0 0 L
A =
6 3 2 1
Then:
2+1 0+5
A+B=s(Cm
6 +3 3+ (=bt)
2.2.1.
A+ (B+0C)
A+3B
A+0
(a +B) A
a (A +B)

where @ and £ are numbers,

2.2‘2.

Multiplication of Matrices,

(A+B)+C
B+ A

A

CA + PA
CA + OB

Multiplication of the

matrices A and B 1s defined if, and only if, the number of columns



of matrix A equals the number of rows of matrix B. The elements of
the product, C = AB, are defined in the following manner: the
element in the ith row and jth column of C is equal to the sum of
the products of the elements of the 1% row of matrix A by the

corresponding elements of the Jth column of matrix B. Thus:

= 1 g b
all 312 eee aln bll b12 e blP
LR N ] b b L ] b
C = AR = 821 8 85n 21 22 2p
aml am2 coe aﬁu: bnl bn2 cee ban
cu c12 o e clp
- c21 c22 L N ) c2p
cml cm2 ces cmp

where:

Cyy = 841Pyy + 84oboy + ceo + BypbHy = i 843Dy 4
k=1

(11,2, vee, m; J=1, 2, ..., P)

Note that the product of two rectanguler matrices is again a
rectangular matrix, where the number of rows is equel to the number

of rows in the first matrix, and the number of columns equals the



mmber of colums in the second. For example, let:

5 @2
2 3 4

A = and B = |6 3
5 2 1

2 1

Then:

2.5 + 346 + 42, 2.2 + 3.3 + kel
AB=C=
5°5 + 2:6 + 1.2, 5:2 +2:3+ 1-1

-

36 17
39 17

Another property of matrix multiplication is:

T T T
(A*B) = B-A

or, the transpose of the product of two matrices is equal to the
product of the transpose of each matrix in reverse order. (This

property may be generalized to products involving more than two

matrices.) For example, let:

3 4 o 2
A = and B = ’
1 5 L 3

then:



Then:

T o 41 I3 1
(aB) = BLAT =
2 31 |¥ 5
16 20
18 17

2.3. Inversion of & Matrix. The inverse a'l, or the reciprocal

of a real number, is defined if a ¥ O. There is an analogous
operation for square matrices. If A is a non-singular square matrix,

then & unique matrix written (A™1) exists with the important property:

m-l o= o1
or:
Al = 1
where I is the unit matrix. If it exists, the matrix A'l is called

the inverse matrix of A and expressed by:

-1

where:
[aiJ]T gl
[biJ] = 150 or equivalently bij = T

That is, the biJ element (the element in the ith row and jth column
of the inverse matrix) is found by 1St transposing the matrix A; then
determining the cofactor (aji) of each element in the transpose; and

dividing each cofactor by the determinant of matrix A, The cofactor

10



is the signed minor determinant obtained by deleting all the elements

in the same row and column as the element whose cofactor is desired;

if the sum of i + J (row number + column number) is even, the minor

determinant is multiplied by & positive one (+1); if 1 + j is odd

the minor determinant is multiplied by negative one (-1). For example,

let:

where a12 =

column of AT.

by (-1).

> [ s > E [
2 1| s A - Y 1)
Al = 3-8 = -5
all = (+1) (1) = 1
a¥? = (-1) (4) = -b

a2l . (-<1) (2) = -2

a2 - (+1) (3) = 3
a’l, the cofactor of the element in the 1°% row ana 274
Sincei+ J = 1+ 2 = 3 multiply minor determinant



Hence:

11 (Al -5 5
b .5"_2_].- = .-—l-" = .1_"
12 1Al -5 5
'b = Eilf. = :—2— = ?-
21 A1 -5 p)
22
b = 9‘._ ™ .i. = - 3
22 1A} -5 5
and:
.1 b
-1 5 5
A = B =
Y 2 3
5 >

The result can be checked by forming the product:

-+ ud D M-

LSRR GRS

1 o
= s T
0 1
—l . -l
Since A°A = ], the inverse A ~ is correct.

The ebove scheme is impractical for matrices of order greater than
two. Consequently, other schemes for the computation of inverses have
been devised. For a 3rd order square matrix, the procedure is as

follows:



let:

then:

where

81 %o 813
857 8op B8o3
%31 %32 ®33
_
l m n
r 8 t
u v A%
8op833 = 833835
Al
al a o - 8.128.
1Al

815853 = 89385
1Al

8o383) - 8py833
1A)

811833 = 81383
1Al

-% - 8

1A

851835 = 8opfay
(Al

13



810837 = 817830
1Al

v =

811822 = 810%
Al

W =

2.4, Differentiation of Matrices. Let A(x) be a matrix depending

on a numericel variable x so that the elements of A(x) are numerical

functions of x. That 1is:
o, (x) 8 ,(x) ... &y (x)]
Ax) = ael(x) a22(x) aen(x)
_aml(x) ama(x) ta.mn(x)4
The derivative of A(x) is:
[da,,(x)  de ,(x) da, (x)]
ax dx ax
da.al(x) da22(x) daan(x)
aA(x) ax ax T
dx
daml(x) damz(x) damn(x)
| ax dx T TTax ]

L




For example let:

A(x Ll 2 ,I
X X 5x ’

then:

aA(x) 6x 6::2 hx3
1 2x 2Ox3

Partial derivetives are obtained similarly. Suppose that:

E -] E K T
3 2 5 xﬂ 3xl+2x2+5x3
AX = 2 L4 3 X, = a:l+1+x2+ X3
y 2 2
' _J -x3J _h-xl + 2::2 + 2x3J
then:
3+0+0 O+2+0
(AX = |2+0+0| ; Ma o+k4+o0
Bxl 3x2
Yy +0+0 0+2+0
and
0O+0+5
o(AX
- 0+0+1
ox
3 0+0+2

It can be seen that partial differentiation of the rows of A+X with

15



respect to each Xy yields the ith column of matrix A.

2.5. Quadratic Forms. A polynomial:

£ = f(x,y) = 5x° + 6xy + 82,

with real coefficients and every term of degree two in x and y, is a
quadratic form in x and y. Quadratic forms play a prominent role in
analytical geometry end statistics. To relate them to matrices, the

polynomial is written:
£ = 5x° + 3xy + 3xy + 8y

= x(5x + 3y) + y(3x + 8y)

5x + 3y 5 3 X
= [x,y] = [x,y]
3x + 8y 3 8 Y
Thus the matrix
5 3
A =
3 8

may be used in expressing the quadratic form f:

f = XTAX
vhere:
1
x
X = column matrix
Yy

T
The column matrix X can also be written [x y] which is sometimes
& more desirable form.

16



3. MOMENTS OF A DISTRIBUTION
The concept of moments 1s utilized for & geometrical interpreta-
tion of the parameters of en error distribution. The first moment

s St s+

of mass 1s the product of the mess and the moment arm. The first

The second moment, moment of Inertis, 1s defined as the sum of the

products obtained by multiplying each elementary mass by the square

of 1ts distance from the line. The second moment, when divided by

the mass, is defined as the square of the radius of gyration. Con-
sidering a distribution representing a hypothetical unit mass, the
moments of the hypothetical mass correspond to the statistical para-
meters of the distribution.

Consider the distribution of missile impacts around an aiming
point, the performance minus computed velues (impact minus aiming

point) are expressed as downrange and crossrange errors, fig. 1.

y crossrange error
o o
° i !
aiming point ol " . downrange error

. '.' .
R impact points

17



The relationships between statisticel paremeters and moments are used
to derive the distribution function [£(x,y)] which describes the
frequency distribution of the errors. The errors are assumed to
follow & normal distribution,

The analysis of a distribution by its moments, in the pure mathe-
matical sense,is complicated, For convenience it is assumed that the
moments, as found by succeeding sections, describe a unique distri-
bution.l

3.1. First Moment. The first moment corresponds to the mean
value of a distribution. The mean values (X,y) of the crossrange and

downrange errors are computed by:

n n

). * ).
- i=1 - i=1
x = n S} y = n

where:

X = crossrange error

Yy = downrange error
The correspondence between the mean value and first moment is appar-
ent from the definition of the first moment and can be visualized by
considering small masses (dm = 1) with coordinates x4 along an assumed

straight bar (whose weight is neglected). The Tirst moment or

A thorough discussion concerning moments and uniquiness of distri-
butions is contained in references Nr. 4 and 12.

18



center of mass of the system of particles (x;) is:

dm  dm
0 1 s ] 4 [i s L] ) x"'% x"w
| 1 l scale

similearly

All masses dm are considered equel to 1.

The values X and y are the centers of the two distributions f£(x)
end f(y), the point (X,§) is then the center of the combined distri-
bution f(x,y). For convenience of notation and computation the
coordinate system is considered as having its origin at (X%,y).

In the theoretical approach, the mean velue is the expected value.
Since all possible values must be considered, the theoretical first

moments are:

Ei{x} = xf(x)ax = py
Ely} = yi(y)ay = uy

-
and:

X-p, 88 N o

&.py as n--w



3.2. Second Moment. The second moment, the moment of inertia,

corresponds to the varlance of a distribution. The second moment of
an object describes a physical characteristic of the mass, the menner
of which the mass is distributed within the body; the variance denotes
the similar characteristic‘within a distribution. The second moment,
about the coordinate axis, of the system of particles xy, introduced

in section 3.1. is:

2
}E: xidm

n
i=1
thus the theoretical second moment is:

f x26m

The veriance by definition is the mean of the squares of all the errors

and computed by:

n

2
Z"i

i=1

n

vhere x is the error.

Written in theoretical sense:

20



since: .

f(x)ax = 1
032{ = fxaf(x)dx = Py = E{xe}
similarlyf
032, = fy2f(y)dy = By, = E{y2}

A standard error ellipse can now be drawn with 1ts center at the

origin and o, and o, es its semimajor and semiminor exes. The

Yy
ellipse displays the concentration of the distribution of downrange

and crossrange errors in the x and y directions.

3.3. Mixed Product Moment. The covariance is the mixed product

moment., Although first and second moments of x and y were described
earlier, when the moments of two or more variables are considered, a
third type, the mixed product moment (covariance), exists. By defi-

nition the covariance is:
-+

xyf(x,y)axdy = Efx,y}

Hxy
where: integration teakes place over the entire ares of the distri-

bution.

3.4, Moment Generating Function. The moment generating function

1s introduced to avoid difficult integration which is encountered in

21



moment (veriance-covarience) functions. The moment generating function

for the univariate case (single veriable) is defined as:
+®

E{eex } = | e%*e(x)ax

where: 6 is & mathematical device introduced for the purpose of defin-

ing the moments.

6x

Developing e in power series:

2.2 3.3
Gx=l+ex+9x 8-x
2! 3!

+...

Integrating the power series:

ex —/;‘(x)dx +f9xf(x)dx +f £(x)ax +f f(x)dx + ...
[f(x)dx +0 xf(x)d.x + —fxaf(x)dx + -;f 3e(x)ax + ...

X +00
+% He(x)dx + ...
"I
From previous definitions:
+00 +e +od
. . 2 =
f(x)ax = 1; xf(x)ax = T x“f(x)dx T
-QD -0 -®
and:
+

xkf(x)d.x = x*? moment of x

22



Therefore:

2

The successive derivatives of E{eex}with respect to 6, evaluated at

6 = 0 yields the corresponding moments.

Since:
X
'éi eex = xkeex
de
at 6 = 0
+® +00
a¥  ex X [
— © f(x)ax = x“f(x)ax = E.xk}
L o

Therefore the moment k of the distribution function may be obtained
by the xth derivative of the function. This property will be applied
later.

3.5. Moment Matrix. The moment matrix (M) contains the parameters

of the distribution and is used as e convenient notation describing the

distribution function.

Hyx  Myy
where:
By = Vvariance in x(a?t)
2
Byy = veriance in y(oy)
"xy = Byx = covariance of x and y

23



M 1l
p = 2L (assumed value)
dey
p = correlation coefficlent
let o = poxoy = uxy

-l1sps+1l
M will always be a symmetric matrix.

The rank (r) of M displays the properties of a distribution.

When:
r= 0; Py = ”yy'ﬂ 0 the mass is concentrated at a point, the
center of mass.,
r=1; = 0 the mass is concentrated on a straight

un * uyy
line passing through the center of mass.
r> 1; there is no straight line which contains the total mass

of the distribution.

L. APPLICATION OF MOMENTS TO THE NORMAL ERROR DISTRIBUTION
The normal error distribution is written in the form:
2
£ - "23"1’{‘%%}
vhere:
Q2 is the quedratic expression of the error distribution.

Ké is the constant corresponding to a particular Q2‘

1. To be proven later.
For notation purposes the exponential values (e

%)
exp{x}.

will be written
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The general normal bivariate error distribution form, expressed by
its statistical parameters, is obtained by use of the moment gener-
ating function and moment matrix.

4,1, Determination of Ké Constant for the Normal Bivariate Error

Distribution. The quadratic expression Q, for the bivariate error

distribution is written:

= 2 2
Q2 allX + 2a12XY + a22Y

Then, from section 2.k.:

Q = [xY] A [x] = [5Y] fa;; &,] [X
Y 85 85 Y
where:
X = (x-X)
Y = (y-7)

For convenience let X = y = 0
For a definite positive quadratic form it 1s necessary that:

>0
®11
a12'> 0
32

®11%0 > ®1p
The fact that, over the entire x,y range, the integral of the f(x,y)

function is unity (1) is used to determine K,. That is:

+00

exp x2 + 28, %y + a22y2)}dxdy

25



completing the square of Q:

2 2
a a
12 2 12 2
a,lx+—y| +a,y --—1y
11 a5, 802 e
2
a a
a x2+2———-12xy+—12y2+a y2..
11 a 2 22
1l all

[ -]
letting:
Zl =
and using:
[--]
Then:

2

Y PR

2 22 all
a2
a . 12
22 all



1 g
2 f11 1y _ 12
2 |22 814
- 2n
= K
a..8 -&2
1122 12
2
K = V21180 = %o
2 2%

2
The factor a11822 - a12 is the determinant of matrix A.

Therefore:

T

2 2n
and the general bivariate normal error distribution is written:

Vial 1 2 2
f(x,y) = L“ exp {- 5 (allg + 28,%y + 8y )}

“Zw P "3

oo -3l

4.2, The Biveriate Error Distribution in Terms of Statistical

Perameters. To determine the significance of the elements all’ a22

and &5 of f(x,y), assume a normal bivariate distribution and deter-

mine its variance and covariance by use of the moment generating

function. From section 3.4. the moment generating function for the

univariate case is:

-+

E{eex} = eexf(x)dx

27



For the bivariste case:

E{exp [ox + eyl} fexp {ax + oy} #(x,y)axay

where: h
#(x,y) = l/—.';@,:. exp { 2 QZ}
There fore:
forp tox + oy1) = VI "'f;;{-;o?w“ey}dxdy

or;

V— +00 .+
Eyexr [ox + GY]} = ——'g—f ﬁxP {- %‘ allx2 + 2a12xy + aeeya)
- -

+ 8,x + eyy}d.xdy

1
Expanding the right side of this equation:
VE'- + 00~ + 8 L) 2
E{exp[ex+ey] " expi- = e x+—l—2-y-—§-
2n 2 11 a )
11 11
-~ -®
a® 8,0, - a..0
1 f12 12°x ~ "'yl L1
o Vel R 1Al + 3 Rpaxdy
11
where:
epfh + an";er - 286,60, 12 222 12
R = 1Al = a9x+a 9y+2°‘ exey
1.

The details of this expansion are shown in Appendix A
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a 2] a.,8, - a.,0
z) = [x+ By )5 oz, = |y BEUY
11 11
Then:
+ @ +
A 1 ) 1
{exp Lex + ey]} - |2=t' f XP {' 3 a:lel}dzl' SXP 1~ 2 | %22
—ﬂ _0
. 1| 11,2 222 12
exp {; 5 (a ex + a8 ey + 28 exey)}
Letting:
o2
1 1 12
C, = 38y Ca"ﬁaaa'iﬁ

+ @ +@
Vial 2 . 2
s f exp {- clzl}dzl f exp {- caze}dz
- 0 -Q0

. exp {+ 1 ( alle2 + e.2292 + 2a'%0.0 )}

E{exp [ex + Gy]}

2

l\)ll—' :\

g
V= i

. exp {+ % (allee + a229 + 29,126 ) )}

For convenience, all, a2, and al? no longer denote cofactors (p 10)

8 833

a
but denote the elements T&1? and 12

TAT TE respectively.

29



Vid e

2

2
811%0 ~ %10

. exp{ _2;(&1162 + 82 e + 2a1% ey)}

Therefore:

E{exp [ox + ey]} = exp {+ = (a1192 + 8 92 + 2a126 6 )}

The varisnces oﬁ and o? are obtained by eveluating the second partial
derivatives of E{éxp [ex + ey]} with respect to 6, and 6y respectively
at 64 = ey = 0. For convenience let E denote E{exp [ox + ey]} in the

following presentation:

3%
36°

X

Ox

OE 11 12
55; = B (a 0y + & 9

—— a9x+a Oy

%R E.all+(ll 12)

B (allex + alzey)}

3
267
At 6, = 6, = 0
2 ¥ 11
Ox = ~—3 = a
36,
Similarly:
2 = éa.;g
y
Bey
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_a_ag_ E.522+(a29 ‘e eH (a oy + & ex)\

At 6x = 6y = 0

The covariance

- - d%E
ny Ef(x - x)(y - Y)i 'a—e-;gg;
JE 22 12
E a E (a. ey + a Ox)
—-—-—aaE = E-al?4 8.229 + 8 Oy E|alle, + a2
96,06, x y

E,al‘?+ e,229 +a126)(a e + 8 9)

At 0y = 6, = 0

32

LA TF TN

From the previous discussion:
= sgecond moment of x
= second moment of y

=  po, oy = mixed product moment of X and y

éq o 3o
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but:
8,
all = °§ L _ee2

;[.KT
20 _ 11
o = & = T
a

Therefore the moment matrix of the bivariste normal distribution is:

all a12 - 02 po._ 0.
a12 a?a PO Oy o§

Equivalently A = M1

Following the procedure outlined in peragraph 2.2. for inversion:

°§ - P9y
55 220 55 2802
0x0y = P Oy, Oy0y = P 00y
Ml o=
b o
22 2822 5 222
- o -
quay LA oiay p oxa'y__l
- -
1 - p

2 3 3
o, (1 - %) oxay(l-p)

-p 1
2 2 2
g l- o (1 -
xay( p) y (1-0)

Vi _ Vixl

Ké = 2n 2%

Thus:
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From 4.1,

Q2=

[x Y] A [X Y]T = [xy)mlx Y]T

_ ) _p -
[x Y] X
Ui(l-p?) vay(l- %) [ }

-p 1
2 2 2

o0, (1 - oS (1 -
KOy (L-97) 0y (1-p7)

X . a 20XY
o:‘: (1 - ¢9) 032, (1 - p°) 0,0, (1 - ¢9)

Thus £(X,Y) = K, exp {- -;- 92}
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2
1 1 X ¥ 2
2(X,Y) = exp 4~ 5 _§+_§-3¥
- X
o0 o (1-p2) 2 (1 p)ax o, y
Xy :
Since:
X = (x-%) and ¥ = (y - %)
-2 -2
1 X - -
e R Y N P e
l-p o c
2,0 \/(1 - %) _ X y
1
2 (x - X))y - %)
0,0,
If p = O (case of independent errors)
& o
M= |
o o
end:
1 1 -2 _)2
(x - %) y-3
(xy) = mpgo e i-3 -
Xy Oy a,

Showing that independent errors are merely a speciel case of dependent

errors.,

5. ANALYSIS OF THE NORMAL BIVARIATE ERROR DISTRIBUTION
In section 4, the equations of the normael bivariate error distribu-

tion were determined, and the elements of M were shown as variances and

B
1. This equation results from the assumption p = GE'UL introduced in

Xy
section 3.5. The assumption may now be proven correct; Appendix C.
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covariances, The covariances for independent errors were zero. This
section is concerned with reducing a normal. error distribution with
dependent errors to a form expressible as independent errors (covari-
ances zero). After this 1s accomplished, circular errors are obtained
by use of the methods presented in ACIC TR-96.

The quadratic expression for independent (Q;) and dependent (QZ)

bivariate error distributions are:

% -3 R S 2+ 2" G0,
Ux O'y -p ﬂx O'y,

VWhen covariances are zero the major and minor axes of the ellipse coin-
cide with the axes of the coordinate system. When the covariances are
not zero, there are dependent errors and the axes of the error ellipse
do not coincide with the coordinate system. Therefore, removal of the
non-zero covariances from dependent errors is equivalent to a rotation

of axes.
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The process of diagonalization of the covariance matrix is used for
the rotation.

Diagonalization is interpreted as follows: If a point p is ellowed
to move freely around the perimeter of an ellipse, there are four posi-
tions where the rate of change of the distance (D2) between these posi-
tions and the center of the ellipse 1s zero. These four positions
correspond to the points of intersection of the principal axes of the
ellipse and its perimeter. The problem then is to find the maximum
and minimum value of p as it traverses the elliptical path. This in-
volves finding the extreme values of a function of two variables with

one side condition. Introducing the Lagrangian multiplier (A):

D2 = F + g

where:
F is (x2 + y2) the square of the length of the radius vector, p.

g is the side condition (the equation of the ellipse).

L}
o

2 2
a,,x + 2a12xy t a5y - C

or:

I
@)

2 2
c - (allx + 2&12xy + 8y )
Thus:

2 2 2 2
D = x“+y  + 2N (C - 81X = 28,,XY - 8y¥ )
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2 3% . oD°

The extreme values of D° occur when —— and —— equal zero.

ox oy

993 = 2x - A (2a,.x +2a.,y) = O
ox 11 12¥

= x-)\.(allx+a12y) = 0

similarly:
2
oD
S; y = A (a.12x + a.22y) 0
Note that:
11 12 11 12
a); 8 [& a ) (a.lla + a8 = 1), (alla.
12 22 11 12
81, 8| |o a (a.l2a *aps = 0), (ama
1l O
Since A-A™l = I =
0] 1

2 2
oD 11 D 12
Multiplying the by & and a ields:
Y = Yy Ty by y
11, 1l
a -\ (alla Iy + a,laally) s 0O

aley - A\ (alza.lzx + 322a12y) = 0

Adding:

11 11

12 12
ellx + a y = A x(alla + a. .8 )+y(a12a + 8y,

12

or:

al]x+a12y-)o: = 0
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2 2
Similarly, multiplying aa%— by a.12 and %P; by a,22 yields:

alfx - A (allalzx +a_a¥y) = 0

12
22 22 22
-Nla; a“x +a_ a = 0
=y - & (e, 2% V)
Adding:
12 22 12 22 12 22 -
a“x + a8y - A x(alla +a12a)+y(a12a +a.22a) 0

or:

a.l2x+a.22y-}\y = 0

Therefore:

ale+a12y->\x = 0

a12x+a22y-hy = 0

Collecting terms:

x (a1t - A) +al?y = 0

xe.12+(a22-).)y = 0

To have non-zero values for x and y the determinant of the coefficients

of the two equations must equal zero,

a.ll - A a12
= 0
a.12 a22 - A

The expansion of the determinant is considered the characteristic equation
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which, in the bivariate case, is:

2

Solution by the gquadratic formule yields:

- b2 V12 - hae

A= -y
where:
a = 1
P = -(a.11+a22) = -(a§+a§)
2
¢ = aMe® - (a),)" = E(1 - o?)
Therefore:
2 2 2 2.2 22 2
\ + (o + Ox) i-\/(ax;ay) - )“Uny (L -p)
2 2 4 22 4 222
) (o, + oy) R -\/( oy - 20,0, + uy) + hcxayp
2 2
2
2
AL I IR

But for independent errors p = O.

Consequently:
2 2 2 2.2
(°x+°y) s (ax- ay)
o= 5 )
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or:

(2 + ?) (o2 - )
A = xazt x2y
2 2 2

. - <oi;oy>+(ax;ox> 2

2 )
Ay 7 - L o= o

That is, the square roots of Ll, and 7&2 correspond to the maximum and
minimum values of D2. Since hl’ and xa elso correspond to the squares
of the lengths of the principal axes of the standard error ellipse,

it can be concluded that the magnitudes of the principel axes are '\/—){
and %.2. This 1s true for dependent errors as well as for independent
errors. The process of diagonalization reduces to the formation and
solution of the characteristic equation of the determinant of the

inverse of the momemnt matrix.

6. ANALYSIS OF THE NORMAL TRIVARIATE ERROR DISTRIBUTION

The theory of the normal bivariate error distribution can bve gener-
alized to cover the normal error distribution for 3 or more variables.
In this section the trivariate case is considered, but a complete deri-
vation 1s not presented because the end value is visualized as an
extension of the bivariate case.

6.1. General Form. The general normal trivariate error distribution



is written:

1
f(x,y,z) = K3 exp {' 3 Q3}

where:
Vi 1
K - JO L
3 3
(2x)
2 2
Q = allx2 + 28 XY + 28, XZ + 8,,Y° + 28,Y7 + 8.z
X = (x-x) Y = (y-% 2 = (z-32)

For convenience let X =y=2z=0

The moments of the distribution are shown as:

variance of X = a.l:L = a,zc
y o a2 a o
7z = 833 = "ﬁ

12
covariance of Xandy = a = "xy
xand z = al3 = Oy,
yand z = a23 = "yz

6.2, Axes of the Error Ellipsoid. The cheracteristic equation

for the trivariate case is obtained by expanding the determinant

all - N a.12 a.13
a12 9.22 - A 5.23 = 0
al3 a23 a33 - AN

Derived in Appnendix B
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It will be of the form:
M- iran-t = 0

where:

r = atl 4 a2% 4 33
2 2 2
s = alla?? 4 g11533 4 422,33 _ (ala) - (al3) - (a23)

t = alla2g33 4 2412513523 | g11 (a23)2 - a2 (a13)2 - 833 (a12)2

The first root (Ag) is found by applying Newton's method to the
polynomial in question (A3 - rA? + sA - t = 0) and utilizing the
first derivative and an approximate value for A,. By successive
iteration the root can be solved for as many correct digits as re-
quired. After the value of one root is obtained, the cubic can be
reduced to & second degree polynomial and solved by the quadratic
formule for the remaining two roots. The procedure is as follows:

#(A) = - +rsr-t = 0

£1(A) = 322 - 2rh + t

Solution of first root:

1
Let hl, be first approximation
f(Kl)
S TR)

A first approximation is the larger of the diagonal elements,
all a22 or a3
’ L]

Lo



successive iteration:

Iet:

Applying synthetic division for the remaining roots:

ar® + (b + ahg) A+lc+ (b + aNg) Ny} = O

Let:

A = a

B = Db+ a&a

C = c+(b+ aka) Ay
Then:

-3+ V2 . lac

)"b= BT

- B -V3e? . e
Ac oh

Therefore, the variances are known and the axes of standard error
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ellipsoid are:

7. ORIENTATION OF THE ERROR ELLIPSE AND ELLIPSOID

The orientation of the error ellipse or ellipsoid must be deter-
mined to complete the geometrical description of an error distribution.
It has been concluded in previous sectlions that the covariance matrix
contains the constant coefficients of the quadratic expression of the
error ellipse and‘that the principal axes of the error ellipse are
obtained by diagonalization of the covariance matrix. The operation
provides the maximum and minimum errors of prescribed probabilities
and 1s comparable to expressing the error ellipse in its standard
form, It is possible to construct equi-probability curves around
the mean value of the error distribution by multiplying these inde-
pendent error values by a particular conversion factor (Theory of Errors,
ACIC TR-96). To construet the equi-probability curves, the orienta-
tion with respect to the original axes must be determined by solving
for the direction cosines between the original coordinate axes and
the principal axes of the error ellipse. The following general theory
and solution holds for both the bivariate and irivariate cases.

7.1, General Theory. Matrix theory coincides with and makes

Ly



explicit use of vectors and vector properties. The rows of a matrix
are considered row vectors uand the columns, column vectors. The
elements of the matrix are components of the vectors. The solution
for the direction cosines involves determination of the cosine of the
angle between the original coordinate axes, (x,y), and the positive
direction of the principal exes, (x',y') of the error ellipse.

From vector analysis:

—
a

— -
b = lal Ib] cosa (1)

wvhere:

dot product of the two vectors a2 and b

»
o
]

2
g
1

product of the magnitude of the vectors a and b
cos @ = cosine of the angle between the vectors a and b

Diasgonalization of the covarience matrix yielded values which were
the latent roots (hl, %2, and h3) and corresponded to the squares of
the lengths of the principal axes of the standard error ellipse. In
converting the quadratic form of the dependent errors (coveriance
matrix with non-diagonal elements unequal to zero) to a quadratic form
of independent ‘errors (diagonal matrix), a coordinate transformationl

has tallen place, Therefore, there should be a transformation matrix

which, vhen applied to the covariasnce matrix, will yield another matrix

In this instance, where the mean valuc of the distribution vas
chosen as the origin of the coordinate system, a rotation lias talken
place vhercas in the genersal case it would be a transformation.



with the latent roots as its diagonal elements.

By definition,l the latent vector of a linear transformation, as
described above, is:

AX = NX (2)
where:

A

covariance matrix

latent root

i

A
X

latent vector

7.2. Direction Cosines for the Bivariate Case.

7.2.1. Derivation.

From eq. (2) AX = AX

87X + 8y = MKy (32)
8%y oYy = MY
or:
(an - xl) X, +a,Y, = 0 (3v1)
a) X, * (a22 - L_L) Y, =0 (3v2)

Since the cosines of the angles between the vectors are involved,
it is possible to assign any value to one of the vector components
and solve for the other with respect to the first.

Letting X, = 1 in equation (3b1)

Refn, Computational Methods of Linear Algebra, pp 37



Then:

- (833 - M)
Yl = a
12
or solving (3b2)
y = 12
1 (a22 - M

The values Xl and Yl vhen placed in eq. 3bl and 3b2 satisfy the equa-~
tions and are, therefore, the latent vector components of the latent
root (A;).

Similarly for the latent root (M)

a, %, + 8 1l = N, (ka)
8Ky + BT, = ALY,

or:

(8'11 - ).2) X, + &yp¥y = 0

8%y + (8 = &) Yy

[}
o

Letting XX S = 1

¢ = B2 _ - ey - M)
2 legy = &) 810

Xl, Yl, x2 and Y2 are the vector components corresponding to the respec-

tive roots and are the components of the X matrix in equation (2).

(5)
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. .
\g\ . ;
\x\fS\ K4 ’:\;/
S| Lo
\%ﬂ t\;’»/
\ ~ X
//,*\\
// \
//// \\
o \

Fromeq. (1) (a - b = [a| |b] cos @) it is necessary to compute
the dot products of ; and —1; and substitute them into eq. (1).

The cosine of the angle between the +x and +x' axis is:
1, = ;1 (unit vector along x axis)
X +Y, = b, (vector along x' axis)

ob.B Xl

I-;'l ol ='\/]_.é VX?_-in
X

os CO8 O = 1

T VgL

1



Cosine of the angle between the +x and +y' axis:

-
a

i 1
-X, +Y,, = ‘1;2 (vector along +y' axis)
-

V55

Angle between the +y axis and +x' axis:

0
(o}
o
Q

N
il

—t—

1, = a'.2 (unit vector along +y axis)

X11+Ylj = bl

cosa21 = ————
X2+Y§

1

Angle between the +y sxis and the +y' axis:

1, = o
Fpy t¥py = By
Y
X5 + Y5

7.2.2, Computation Method. The direction cosines are

obtained by writing the latent vectors in form of eq. (5); sumning
the squares of all elements of each individual columm; extracting

the square roots; and dividing each element of the matrix (5) by

k9



the square root of its column.

x' yl
X -
x cos 0y, = —F 1 , cos &, = ————-{2——--
Ve X5+ Y5
(6)
Y Y,
y cos 0, = -——E§L——- , cos 8,, = =2
Ny Vi + 15

By definition the direction cosines measure the angle between the
original positive axis and the positive principal axis of the error
ellipse. The angles whose cosines are positive (+) are less than 90°;
the angles whose cosines are negative (- aij) are angles of 180° minus
the angle of + aij'

For example consider the cosines as:

xl ]
x [+ +
yi- +

The angle between x and x' is 90° or less
y and x' is 90° or greater
Therefore, x' must be in the 4! quadrant.
The angle between x and y' is 90° or less

y and y' 1s 90° or less
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+y

\%‘ 8 ai! L +xX

T.3. Directlon Cosines for the Trivariate Case. The direction

cosines for the trivariste case are found in the same menner as the
biveriate case. However, the addition of a new coordinate axis (z)
and another vector causes difficulty in the solution of the latent
vectors. In the trivariate cese there are 3 latent roots (A\) which
must be solved to obtein 9 latent vector components.

From eq. (2): AX = NX

For the latent root )‘n’

a17%, + 819¥n * 8137 T AKX,
a12X n + a'2.’:‘Yn + a23Z'n = )‘nYn (7a)

a13xn + 523Yn + 8,33Zn = xnzn
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Where n refers to any one of the 3 latent roots (xl, A, or h3)

or.:

(all - xn) X, + &Y + al3zn = 0
appX, + (8gp = Ny) Y + ap32, = O (7o)
a13xn + a23Yn + (a33 - Ah) z =0

1
Since the determinant of this system equals zero the solution presented

in Coordinate Geometry, pp. 114-115 Theorem [22.1], is applicable.

Then:

Xpi Ypi 2 = l312323 - (agp = N) 313" - l(au - M) 83 - 312313]’

[(an - NN ey, - ) - al2a12]

= {(oza - A)ag3 - ) - sagea)i - {ap (o33 - M) - mygeas)s

,°m°23 - 813 (agp - ’m)' (8)

- - {8-12 (233 - &) - l5‘23‘3-13'}‘ [(511 - M)agz - A,) - 3138‘13}’ :
- {(311 - Ny apg - a12"'13‘

Because this is the equation set equal to zero in section 5, the
determinant of the system must equal zero to determine the values

of M,
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The ratios of the latent vectors mey be computed from any one of the

above equations. For exsmple:

- Al) a

{ %12 23 -7, 13}

or:

)

X = {(a22 - hl)(a33 - Kl " 88

1 |, e

The latent vectors of the other roots are then solved similarly and

the vector matrix X is formed.

- -
x1 x2 x3
Yl Y2 Y3 (9)
Lz1 22 z3

Under the same hypothesis as in the bivariate case, the direction

cosines are computed.

x! y! 2!
x |cos 0y, = gl cos Oy, = gﬁ cos )3 = gi
1 2 3

Y [cos oy, = éi cos Q,, = ;z cos Oy = ;ﬁ (10)
z jcos o) = gi cos Oy = gﬁ cos Opy = gi
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where:

2
5 = xi"'Y?."'Zl
s, = T\ Yo+ 7

(]
=
+
wh
S

53

The solution of equation (8) allows for the signs of the vector
components, and orientation is similar to that in the bivariate case.
Thet is, the direction cosines, as given in matrix (10), measure the
angles between the respective exis.,

For example:

—— — — — — )

e ———— . —— Y
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As oriented using x', y', z' direction cosines are:

xl yl zl
x |+ - +
y |+ + -
z |- + 4

7.4, Basic Properties of Direction Cosines. Checks resulting

from the basic properties of cosines to insure correct values are:
2 2,3 2
8. coszanl = 1; co:stOtne = 1; cosaan3 = ]
n=1 n=1 n=1
b. To check the perpendicularity of the principal axes.
Bivariate case:

cos O _cos O + cos O _cos O = 0
11 2 12 22

Trivariate case:
cos O _cos O + cos8 ¢ _cos O + CO8 O_ _co8 O = 0
11 21 12 22 13 23

cCoOs8 O _cos X+ cos 0. _cos O + cOs 0. _cos O a 0
11 31 12 32 13

33
cos aalcos a31 + cos a22cos 0/32 + cos a23cos 0133 = 0

c. The determinant of the [cos cyy] must equal +1

d. Each element in [cos anm] must equal its cofactor

e. Xlax = 2
By multiplying the inverse of the latent vector matrix by the covariance
matrix and the latent vector matrix, a diagonal matrix is obtained which

has the latent roots as its diagonal elements.
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8. APPLICATION OF THE MOMENT ( COVARIANCE) MATRIX TO LEAST SOUARES
ADJUSTMENTS INVOLVING CORRELATED OBSERVATIONS

In many geodetic investigations least squares adjustments - a
special branch of statistics - are used to obtein consistent estimates
of measured veriables and to provide estimations of the reliebility
of the estimates (i.e., standard errors).

This section contains a matrix solution of a general least squares
problem, and shows how & system of normal equations is related to the
covariance matrix, and how the theory of the preceeding sections are
used to reduce a system of correlated observations to one involving
derived observations which are uncorrelated.

8.1. Observation Equations. Suppose the following system of obser-

vation equeaetions is given:

aX +bX +CX. .+ 0omMX + B8 = 27

11 l2 13 lm 1 1l
X +b + + +eo + 2
8%yt P¥p t C%g om T % T %
ax +bx +cx +..mX + 8 = 7
n 1 no n'3 nmnm n n

where:
a,b,¢, ...y m,s are constents known from the theory of the observa-

tions, Z 1s the quantity observed and xl, X cee, X, are unknowns to

2’
be found.
If the observations were without error, these equations would be

satisfied by the true values (gl, €05 o) §m) Of X3, Xg5 evey X
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Since all observations are subject to small errors, there is no
system of values for the unknowns which satisfies the equations
exactly. As previously mentioned, one of the purposes of a least
squares adjustment is to find & system of best estimates (% 7 xa,
«esy %) for the unknowns.

let hl’ h2’ h3, eeey hp be the values of the left side of the
system of observation equetions when any assumed set of values

(x? 3 x! o sees X ) for the unknowns is taken. Then the errors (or

more strictly the residuals) of the observations are given by:
where:
i = l, 2 ) ey n
Ietting:
ky = 24-84
the system of observation equations is written:

ax_ +bx.+ecx.+ ... +mX =Kk

o T - T m~ X =V

1l

. L . Ld L] L] L] L] L4 . L] L] L ] L L] L] [ ] L] L] . * L]

X, +bx,+c X+ 0.+t mX =~k = V
8 ne n3y °° Bim n n
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Introducing matrices, let:

where:

K =

nxl

mx1l
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all ala [ R N 3 alm
831 8op e Bop
banl 8'112 [ N ] arlmJ
8p = by
a = b
s e2 2 s ete.
a.n2 = bn
X1 1
*l, va |Y20, x =
‘ nx1 ' mxl
imﬂ Yn
0 +. O
Py
O [ N ] 0
P, .
o o se e Pn

weight matrix




The residuals of the observations are given by:

\ - K+ AX
nxl

If X has the value i,

(1) v = - K+ X

8.2. The Theory of least Squares. The theory of least squares

requires that the sum of the squares of the weighted residuals be a
minimum, that is [pve] or [pvv] equels a minimm. A necessary con-
dition for the fulfilment of this requirement is that the m partial
derivatives of [pvv] with respect to J'El, «ery X e zero:

) avl ovy

(2) aij [pvww]l = 2 plvls-i-'c; + eee DV, 5—);{-3

= 0
where:
J = l, 2, ee ey m

From (1):

avi

]
axd 1]

where

i = l’ 2, 00y n

J = 1,2 .., m
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An alternate way of writing (2) is:
ATPwv s 0
Inserting (1) into this equation yields:

ALP.(-K+AK) = 0

AT PAR = Al.p.x

8.3. Solution. The matrix product AT- P+A 18 equivalent to B, the
symmetric coefficient matrix of the normal equations for the system of

observation equations. Thus the preceeding expression may be written:
- T
BX = A .P:K

letting AT-P-K equal C, the solution for the unknowns in matrix nota-
tion is:
X = B~Ig

8.4, Verification. [pvv] can be obtained from the matrix product:
[pvv] = VT'P'V

To verify that V actually minimizes [pvv], consider another set of

corrections V' and values X'.
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In this case:

Vl

~ K + AX!
Subtracting V from V':
VP -V = A(X'-X)

Now:

A (vt = V) +v
and:
[pv'v'] = V'T-P-V'
Substituting V' = (V' « V) + V:
T
[pv'vt] = [(V' - V) + V] 'P-[(V' - V) + V]
Applying the distribution laws of metrix multiplication:
T T
[pv'v'] = (V' =« V) ePo(V' = V) + (VY = V) PV
+ VT'P-(V' -V) + Vepey
rearranging terms:
T T T
[pvlvll w V PV + (vl - v) ‘P'(V' - v) + (V' - V) Py

£ VR (V - V)
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Substituting (V' - V) = A (X' - X) into the third and fourth terms:

[pv'v'] = VEePeV + (V' = V) ePo(V' = V) + ,A (X' - }'E)} Ty
+ Voo {a(xr - B)
= vT-P-v + (V' - v)T-P-(v' -V) + (X - i)T-AT-P-v
+ vT-P-A-(x' - X)
but:
ALY = 0O
thus

VT°PT°A = 0 = O

and

{pviv'] VEepey + (v* - V)T-P-(V' -V)+0+0

[pvv] +[p (vt = v)(v' - V)]

{pw] +[ p (v - V)a]

2
The factor[ p(v' =-v) ] is positive or equal to zero. Thus it
2
is seen that [pv'v'] 15 e minimm when[p (v' - v) ] is zero or when

vy =V,
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8.5. The Moment Matrix. Now assume that the true values §1, §2,

sy §m and true errors €12 €pr +ves €, vere known.

Introducing:
3 €1
3 €
E = 02 and e' = .2
g €
En) m]
where:

€y = Xy -8y
[pee] = the sum of the squares of the weighted true errors
2
= [pw] + p(e' - V)

= [pw] + (€' - V) oPe(e! - V)
but:

e' -V = A(E-X)
o [pee] = [pvv] + IA'(E - i)} T'P' {A'(E - i)l

= [pvv] + (E - )'{)T-AT-P-A (E - X)
but:

A .P-A = B
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and:

[pv] + (E - %) +B-(E - X)

[ peel

R+ (B - X)oBe(E - X)

where:

qa = VIpw)
From statistical theory it is known that the normel error distri-

bution of il’ ie, ceey im and q cen be written in the form:
o}

(3) Q (quadratic form of the error distribution)

O] P

f (il’ ceey im; Q) = KexP{'

where:

(X - E)T-B-()'c - E)

Q (ref. 1)

02 = the variance of a single observation after adjustment.

and:
K is a constant corresponding to Q.
It was shown in section 4.2. that Q of a normal bivariate error
distribution is:
Q = [xyllarlxy)
where:

-1

M =  the inverse of the moment matrix.

Comparing this expression to (3) indicates that:

Ml o=

B
2

6l



Multiplying from the left by M:

a1 M
wl o= 1B
y

_ B
1 >
[+

Multiplying from the right by B~L:

-1

-1 _ M
B -
g
or:
M = 023’1

The latter equation states that the moment matrix (or covariance
matrix) of the best estimates of the unknowns is equivalent to the
product of the variance of a single observation and the inverse of
the coefficient matrix of the normal equations.

M in the multiveriate cese is:
- -

°§ Px x % 9x cee Py x Y%
In

[/
1 12 %1 %2 *n

1
M = LN

g, C o o v 02
lexm x, %% XX xaakm X,
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wvhere the dlagonal elements are varisnces, the non-diagonal elements
covariances, and the p's correlation coefficients.

8.6. Transformation of Errors. In the case of independent
(uncorrelated) errors, the p's are zero and M is a diagonal matrix
or equivalently B"l is a diasgonal matrix; in the case of dependent
(correlated) errors the p's are not zero and B'l is not a diagonal
metrix. Thus it may be concluded that: if B'l, for correleted
observetions, is transformed into a diagonal matrix, then uncorrelated
errors are obtaeined.

To effect such a transformation the process of diasgonalization is
used (section 5 for the bivariate case). For the multivariate case,
the determinant of B'l, with & factor A subtracted from each diagonal
term, is expanded and set equal to zero. These operations yield an
mth degree characteristic equation having m real roots. The roots
when multiplied by 02 yield the variances of the unknovms in an

uncorrelated sense., The standard errors are found by extracting the

square roots of the variances.
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APPENDIX A
EXPANSION OF THE NORMAL BIVARIATE MOMENT GENERATING FUNCTION

(Reference No. 12)

In section 1&.3., it was asserted that:

+60 400
2
[ j;xp 3 ( 17 x° + 2a.l2xy t 8,y )

+ 0% + eyy}dxdy (1)

{exp [ox + 6J]

a2 a..0 a,.0 2
1 f12 127 - futy) L1
5 %0 = y + T + = Rpaxdy (2)
11
where: o
R = a226 + alley 28.,0.0
1Al
Let:

o = 2x [the exponential in (1)]

2 2
- a.llx -2al2xy- 8ppY +29x4 26'y
end:
2
8.,y 2)
Py = 'all(x+ =
11 11



2

2
212} [, 2125  endy
&, y 1Al Al

Po = = |8 -
To prove that (1) equals (2) it will suffice to show that:

a = Bl+52+R

or equivalently that:

2
2
a e
12 X
B, = =8 X+ ==y -
1l 11 all all
a 2] a a a.,0 )
N g S - R 2 A
! 11 82 %n as as. %11
11 11
2
Chh &
a2 a2
11 11
2 2
28,50y 8nY 6
B, = -allx2-2a12xy+26xx+ 127" :'2 -ax
11 11 11
2 2
a..0 e.,,0
B, = = 822__3_'_12__ y + 127x Uy
2 &, 1A) A}
2 2 2 2 2
L 5.22 i _312_ y2 . 2a129xy i 2anef i aanagfxey . alzex . a’lley
&, |A] 1Al |A|2 ,Ala 'Ala

A-2



Expanding:

2 2 3 2
6 = - . y2 . 810y ) 2a12a229xy . 2a126xy N 2a11a226yy i 2a11a129yy
2 2 &4 1Al 1Al 81, 1A) 1Al 8y

2 2 Yy 2 2 2

3
B W i o e P U A U e S T
3 2 B 2 5
Al 1A1%, 1Al A1 %8, 1Al
0. 8% o2
et ;2 ¥
|Al C
Collecting terms:
-R -0+ +
= By * R
(i1} ® ® Q@ ® (11} ® ®
~-R = ax2+2a Xy + 2-29;{-29 - a x2-2ax+—2f-}~2£:-{z
11 12 BopY P y = 8y 12%Y &)
®, .2 20 2 ® 30
® ®
80y 6y o  B1pY 28158550,y 28,0,y
t20.x - "Ll TGV RTY MY
&1 &1 %11 81
® o, ® ® 3
. 2a11a229 xy i 29.119.129 yy . 2311a128‘229x9y ) 2alla129xey
Al IAlay; 1a12 Al 2a11

® ® ® o
2 2 be 2 2 2202
O B12%2%x | %12% Pafeby | fn%aoy

+
112 1Al 2al A2 1Al 2al

1 1



Combining terms (smell numbers circled ebove expressions indicates

expressions combined)

® °‘11x2 - allx2 = 0
® 2&12xy - 2a12xy = 0
® +ay) - eyt = 0
® +20x -20x = O

3
® + 2a129xy i 2&126,229xy . 2a129xy
811 1Al 1Al 84

3
2|14 alzexy - 23128‘11a229xy + 2a.129xy
IAl all

| 2
2l a0,y - 28,50,y (311"‘22 - alg)
1Al 8'117

Since:




@

Since:

2.2 2.2
12y Ry
811 817
28 e 28, a2 2]
11%22%Y _ “P1 %%y
1Al Al O
2
8,180 1Al + &y
2 2
(2IAI + 29.12 - 2a12) eyy - o
7Y ¥
- 26 yy + 26 yy = 0
3 3 )
2811819%00,0, 28178708y _ ‘2“11&12"22 - 2815) 6,6,
2 2 2
1Al Al e Al
e, [a..a.. - a2 )60 26..6. 0
= 12(1122 12) Xy - 12°x"y
1412 1Al
2o & ae® g 181262 - a8 6202 + &t 02
1222x+ 127x S X 117227127 x 12%x
2 2 " a - 2
1Al 1Al 81y 11 lAl a8,
22 2.2 2 22 2 2
1Al 0 - alzex (ana22 - al2) i} 1Al ex - 1Al amex
- 2 - 2
1Al 8y Al (o



Gi (IAI +a.2)

12
= - 1A} 814
a.2 62 a.2 a.2 62
® - 1%2% | "nf12%
a2 TEN
11
Therefore:
R = ®+O+®
2 2
& . 2a129x9} i a.226x i alley
|Al Al 1Al
or:
2 2
R o 3229:: - 2:3.129x9y + alley
Al
Since
= ~
n %2 %22 f12| _
. W W
12 %2
%12 81
" T

Comparison ylelds

820 11
17

Ab

2 2 2
N % | 211%0 - o3 * 12)
Ala,,
3 2 2 2.2
811800, * 811859,
2
G 1Al
62 (a -8 )
“ve1 {%11%22 " 12
1Al 2
11
- 8.11 8.12 a
= 12
B2 S| |8



8
12 12
-

etc.

Thus: R may also be written as:

112 22 12

2
R = & ex + 8 Oy + 28 exey



APPENDIX B

DEVELOPMENT OF THE CONSTANT FOR A TRIVARTATE ERROR DISTRIBUTION
(Reference No. 12)
This development can be carried out by introducing a change in the
designation of the coordinate sxes and following the procedure used in
the bivariate csase.

From section 6.

Nl

o}

Taking the integral over the entire universej
+00 +00 +e0

F(x,y;8) = ffKS exp {- % QB}dxdydz 8 1

-0 ~09 -D

f(x:Y:z) = K3 exP{"

where:

2 2

2
Q3 = a)x 4+ 2&12xy + 2al3xz teyny + 2a23yz + 8332

+ 400 +
& .]%; i[ fexp {- % Qa}dxdydz

Making the coordinate notation change:

3
L y to J_‘ y2
X yl
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Q. can nov be written in simplified Torm by:

3
Q =

vhere:

<
|
"

e
n
]

Letting:

jan]
|

al =

13

3

)

8139175

i, J=1

3 o 3
fl_: 1573 Z
all yl + 8‘11 + 1,J=2 a’i,j

3

Z 81573

=2

8y

8. Y

233

)

B-2



a.i'j

alll&

=

-

8.1 =

iJ

ke _
Sk

ap38{p

i A,

8l

22

k-t

k-2

2k }_Ll_:a'k s k-1

k-2

®k-1, k-1

Using these substltutions the integral becomes:

1

%3

1] [

~ -0 -0

+00 +00 +00

- 58

Next it will be showvm that:

Once this has been proven, K

)
8op

3

2 1 ,
22 -3 altz

can be found by integration.

Proof: 1In a symmetric quadratic form:

JRIRYe

22
i=2
J=2

aji



33 833
i=3 8%
J=3

2
2%
al = g .._].'3
®11

i=3
J=3

i=2
3=3

Using the above substitutions: ® Q ®
A ’_A\

2 2 2 2
1 2 81aYp 28158y3VpY3 81393
°11Z§ = g lay t 2V YR Y3t e YT e, t ey

a8
Zp = Va*'a'?"z% " y2+_1_‘(323__1533_2_1)y3
8o 11

B-k



2
1 2 1 812 {2 80813
5 8% = 3 (aza " )3’2 +2 (“11&23 alar-all POVE
11 11
2
a = B1n8
L 1 (%1183 = 819813 y2
) 1 3
8
@ ®
— N ——
2
1 2 %12 2 ‘%1%3 - 81083
= 3 {aeeya " Yot 2oy a
11
°
- 2
811803 = 8158y
+ 1 ( 1 3a. 12 3) ygl
aéa 11
Also:
® 0)
rreks T 2
1 4,2 2 #1393 1 [%11%3 "~ 2p%3 2’
etz = 8,.Y = - y
2 ®33% {333 &y a‘éz( ay; 3

1 2 1 o2 $ 2 .
Adding 5 {allzl + 8222.2 + a33z3 } and combining like terms yields:

‘anyﬁ * BeipVyVp + 28)37)V3 * Bpp¥p * Bapgipyy “33y§|

v b

The expression within the bracket is Q. QED

B-5



Now:

[t e -y

applying this integral to the integral for + ylelds:

X3
+080 te +®
% -[exp{- % allZ?}le -fexp{- -23: zat,‘,lazg}az2 -fex'p{- 2a
- “® ‘o
_l_(}_ I %, LA x I (21)3
’ V fen  Beb 3 ads N 81y - opp * o)

e gl o gl
*\ﬁ.n a22 a33 can be written in a more convenient form.

2

Since:
.51 * &y
al
I = - _L}?.)_
& = &p - o
' ) l3a213

®33 T %3377

22

The product of the radicand is:

() 2] |-

2
}

al

|- Iall°°2'2'°‘3‘3'a'11°2'2
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a? a? 28,,8- 8 a a2

SR N P -1 N (PR IS S - 1 K 13812
11 22 " & 33 " @& 23 ) - 2

11 11 11 811

Expanding:
= a_.&..8 2 2 + 28_.8a..8

2
11%22%33 ~ %22%13 T ¥33%12 T f11%23 23%21%31

Thie expression is merely the expansion of the 3 X 3 symmetric deter-

minant JAl :
87 %12 %13
= fa, 8y Bpg
213 %3 %33
Therefore:
3
1.\ ten
K 1A
3
or .
K =\
(en)
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APPENDIX C

PROOF OF ASSUMPTION THAT py, = pOxOy IN NORMAL BIVARIATE ERROR
DISTRIBUTION

In section 4.3. the general normal bivariate error distribution
was derived using the assumption that ("‘xy = po‘xuy). Determination
of the mixed product moment, (p.xy) should equal POy Oy, if the assump~
tion is correct.

From section 4.3.

2 2
1 1 (x-%)  (y-¥)
£(x,y)ixdy = N exps - 5 S+ 5
2%g,0,V 1 - P 2(1-9p) oy oy

- 2p (x = i)(y = il axdy
Ox 0y

To prove: Exy = pOyOy

By = E{(x - 2)(y ')} - jﬁx - %)(y - §) £(x,y)axdy

1
<

Let:
x - % s Z and M = 2
Oy 1 Oy 2
Then:
x-% = 20, y-3 = Z2°y
X = Zlcx + X y = Z2<1y +y
ax = 0,479 dy = aydza



Then substituting in:

29200y 1 2 2
My [ ] 2 exp < - — (zl - 2pZ. 2, + Zy| p OxdZ 0,47,
-0 “~a 2 (1 -

2:wc p p)

For a given distribution the quantities oy, ©

y» P and 2% are constants:

2 2
Z; - 2leZE + Z2) dz,d4z

By = B 5+ A f‘]+ —— (1 194
21\/(1-,3) 2(1-9)

Introducing two new variables:

2
b A = V=W ; = v +w ; 7.7 = Va-w
1 .\,;‘ Z2 VE_ 172 2
Then:
2 _ VP 2w, W L -
Zﬁ‘apzlzz”a"2"%‘"*?'2"(?'?)+?+“¥+?

v (1 -p) + Ve (1 + p)

Since the Jacobian of this transformation is unity, dZ1d22 equals dvdw.

Now (1 - p)(1+p) = 1-p°

Thus:
Ox0. m 1 v2(l-p)
Bxy * _'—"y_"[ _T—exP R RO Sy
21\/1 -p
w2 (1 + Q)
taeE e [T
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+00
0xO. 2 exp ve N Wl )} av dw
2 21! ll+p l-p .\/l+pv1-p

_a m;;exp Y v?)} av__ _aw
E*- 2Ll+p l-p VT+DV1'9

The first integral can be written:

+00 =+
v2 we dv dw
21t exP l+p+l-p Vl V—I
Lo “-c0 +p -p

or:

[ F i)

Now:
+@ +®
v2 exp {- %( lvf p)}dv is of the form j;:2 exp{- cxa}dx
-0 -®
vhich is
2| /%
( 22c c

1

where: ¢ = m

Thus the first integral becomes:

Fx;{-%fp)} o EVE VT e’

o '\/l+p l-p
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1+p 1 1, e:;{_ WP }dw
Vi-eVave oL FUC®

The latter expression is of the form:

j:::: { - caxa}dx %

«
with:
02 = 1
2(1 - p)
and:
I S
VavVi-p

Therefore, integration of the first integral yields:

l+p 1 12.'\/;-‘/;-‘/1_'3'_1_‘_‘:
Vi-pVxVe P

Using similar methods on the second integral yield ~(1 - p) as the

result.
Therefore:
o
e - (1 -
By = —3% (1+0p) (1 -p)
or:

Bxy = POxOy
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